3 research outputs found

    Retrospective analysis in oculocutaneous albinism patients for the 2.7 kb deletion in the OCA2 gene revealed a co-segregation of the controversial variant, p.R305W

    No full text
    Abstract Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder. A significant portion of OCA patients has been found with a single pathogenic variant either in the TYR or the OCA2 gene. Diagnostic sequencing of the TYR and OCA2 genes is routinely used for molecular diagnosis of OCA subtypes. To study the possibility that genomic abnormalities with single or multiple exon involvement may account for a portion of the potential missing pathogenic variants (the second), we retrospectively analyzed the TYR gene by long range PCR and analyzed the target 2.7 kb deletion in the OCA2 gene spanning exon 7 in OCA patients with a single pathogenic variant in the target genes. Results In the 108 patients analyzed, we found that one patient was heterozygous for the 2.7 kb OCA2 gene deletion and this patient was positive with one pathogenic variant and one possibly pathogenic variant [c.1103C>T (p.Ala368Val) + c.913C>T (p.R305W)]. Further analysis of maternal DNA, and two additional OCA DNA homozygous for the 2.7 kb deletion, revealed that the phenotypically normal mother is heterozygous of the 2.7 kb deletion and homozygous of the p.R305W. The two previously reported patients with homozygous of the 2.7 kb deletion are also homozygous of p.R305W. Conclusions Among the reported pathogenic variants, the pathogenicity of the p.R305W has been discussed intensively in literature. Our results indicate that p.R305W is unlikely a pathogenic variant. The possibility of linkage disequilibrium between p.R305W with the 2.7 kb deletion in OCA2 gene is also suggested

    Applying next generation sequencing with microdroplet PCR to determine the disease-causing mutations in retinal dystrophies

    No full text
    Abstract Background Inherited Retinal dystrophy (IRD) is a broad group of inherited retinal disorders with heterogeneous genotypes and phenotypes. Next generation sequencing (NGS) methods have been broadly applied for analyzing patients with IRD. Here we report a novel approach to enrich the target gene panel by microdroplet PCR. Methods This assay involved a primer library which targeted 3071 amplicons from 2078 exons comprised of 184 genes involved in retinal function and/or retinal development. We amplified the target regions using the RainDance target enrichment PCR method and sequenced the products using the MiSeq NGS platform. Results In this study, we analyzed 82 samples from 67 families with IRD. Bioinformatics analysis indicated that this procedure was able to reach 99% coverage of target sequences with an average sequence depth of reads at 119×. The variants detected by this study were filtered, validated, and prioritized by pathogenicity analysis. Genotypes and phenotypes were correlated by determining a consistent relationship in 38 propands (56.7%). Pathogenic variants in genes related to retinal function were found in another 11 probands (16.4%), but the clinical correlations showed inconsistencies and insufficiencies in these patients. Conclusions The application of NGS in IRD clinical molecular diagnosis provides a powerful approach to exploring the etiology and pathology in patients. It is important for the clinical laboratory to interpret the molecular findings in the context of patient clinical presentations because accurate interpretation of pathogenic variants is critical for delivering solid clinical molecular diagnosis to clinicians and patients and improving the standard care of patients
    corecore